Experimental Analysis and Performance Evaluation of Solid Desiccant Dehumidifier Using Silica Gel

Zafar Alam and Taliv Hussain
International Journal of Analytical, Experimental and Finite Element Analysis
Volume 9: Issue 1, March 2022, pp 1-8


Author's Information

Zafar Alam 

Corresponding Author
Mechanical Engineering Department, Aligarh Muslim University, Aligarh, India. 202002
zafaralamalig003@gmail.com

Taliv Hussain

Mechanical Engineering Department, Aligarh Muslim University, Aligarh, India. 202002


Research Article -- Peer Reviewed
Published online – 13 Feb 2021

Open Access article under Creative Commons License

Cite this article – Zafar Alam and Taliv Hussain, “Experimental Analysis and Performance Evaluation of Solid Desiccant Dehumidifier Using Silica Gel”, International Journal of Analytical, Experimental and Finite Element Analysis, RAME Publishers, vol. 9, issue 1, pp. 1-8, March 2022.
https://doi.org/10.26706/ijaefea.1.9.20211202


Abstract:-
Simple and Economical method to produce dehumidification is by solid desiccant wheel with a desiccant material (silica gel) which attract moisture from moist air. Experimental analysis of the working of the dehumidifier desiccant wheel is indicated in this work with actual thought to the performance deviation as a function of airflow rates at the process side and ambient temperature for hot and humid conditions. The silica gel is reactivated by an electric heater which is fixed in the reactivation portion. Flow rates of the air have been varied (that is, 2.8, 3.5, 4.5, & 5.2 m/s) at the process section of the desiccant wheel, while on the reactivation section, airflow rate is constant (i.e., 2.8m/s). At various ambient temperatures (i.e., 32, 33, 34, & 35°C) and various airflow rates, performance parameters also analyzed like Moisture Removal Capacity (MRC), Dehumidification Coefficient of Performance (DCOP), dehumidification effectiveness, and Sensible Energy Ratio (SER). We observed that the optimum values of these performance parameters in this work are obtained at 3.5m/s air velocity at the process section and 34℃ ambient temperature. Optimum values of these parameters show a decrease in energy used and improved air quality in the conditioned space.
Index Terms:-
desiccant wheel, regeneration, dehumidification, moisture removal capacity, sensible energy ratio.
REFERENCES
  1. Dai, Y.J., Wang, R.Z. and Zhang, H.F., 2001, “Parameter analysis to improve rotary desiccant dehumidification using a mathematical model”, International Journal of Thermal Science, Vol. 40, pp. 400-408
    Crossref


  2. Sheridan, J.C. and Mitchell, J.W., 1985, “A hybrid solar desiccant cooling system”, Journal of Solar Energy, Vol. 34, pp. 187-193
    Crossref


  3. Collier, R., Arnold, F. and Barlow, R., 1981, “An overview of open cycle desiccant cooling systems and materials”, Solar Energy Research Institute, SERI/TP-631-1065.
    Crossref


  4. Jurinak, J.J., Mitchell, J.W. and Beckman, W.A., 1984, “Open cycle desiccant air conditioning as an alternative to vapour compression cooling in residential applications”, Journal of Solar Energy Eng., Vol. 106, pp. 252- 260.
    Crossref


  5. Aly, S.E., Fathalah, K. and Gari, H.A., 1988, “Analysis of an integrated vapour compression and a waste heat dehumidifier A/C system”, Heat Recovery Systems & CHP, Vol. 8, No. 6, pp. 503-528 .
    Crossref


  6. Yadav, Y.K. and Kaushik, S.C., 1991, “Psychrometric technoeconomic assessment and parametric studies of vapor-compression and solid/liquid desiccant hybrid solar space conditioning systems”, Heat Recovery Systems and CHP, Vol. 11, pp. 563–572.
    Crossref


  7. Farooq, K.D. and Ruthven, D.M., 1991, “Numerical simulation of a desiccant bed for solar air heater conditioning applications”, Solar Energy Engineering, Vol. 113, pp. 80–92.
    Crossref


  8. Waugaman, D.G., Kini, A. and Kettleborough, C.F., 1993, “A review of desiccant cooling systems”, Journal of Energy Resources Technology, Vol. 115(1), pp. 1–8.
    Crossref


  9. San, J.Y. and Hsiau, S.C., 1993, “Effect of axial solid heat conduction and mass diffusion in a rotary heat and mass regenerator”, International Journal of Heat Mass Transfer, Vol. 36, No. 8, pp. 2051-2059.
    Crossref


  10. Pesaran, A.A. and Wipke, K.B., 1994, “Use of unglazed transpired solar collectors for desiccant cooling”, Solar Energy, Vol. 52, pp. 419-427.
    Crossref


  11. Zheng, W. and Worek, W.M., 1995, “Performance optimization of rotary dehumidifiers”, Journal of Solar Energy Engineering, Vol. 117, pp. 40-44.
    Crossref


  12. Gao, Z., Mei, V.C. and Tomlinson, J.J., 2005, “Theoretical analysis of dehumidification process in a desiccant wheel”, Heat Mass Transfer, Vol. 41, pp. 1033-1042.
    Crossref


  13. Xuan, S. and Radermacher, R., 2005, “Transient simulation for desiccant and enthalpy wheels”, International Sorption Heat Pump Conference, June 22-24, 2005, Denver, CO, USA.
    Goolge Scholar


  14. Nia, F.E., Paassen, D.V. and Saidi, M.H., 2006, “Modeling and simulation of desiccant wheel for air conditioning”, Energy and Buildings, Vol. 38, pp. 1230-1239.
    Crossref


  15. Jani, D. B., Mishra, M., & Sahoo, P. K. (2016). Performance prediction of rotary solid desiccant dehumidifier in hybrid air-conditioning system using artificial neural network. Applied Thermal Engineering, 98, 1091-1103.
    Crossref


  16. Abbassi, Y., Baniasadi, E., & Ahmadikia, H. (2017). Comparative performance analysis of different solar desiccant dehumidification systems. Energy and Buildings, 150, 37-51.
    Crossref


  17. Lee, Y., Park, S., & Kang, S. (2021). Performance analysis of a solid desiccant cooling system for a residential air conditioning system. Applied Thermal Engineering, 182, 116091.
    Crossref


  18. Hussain, T., Kamal, M. A., Alam, Z., Hafiz, A., & Ahmad, A. (2021). Experimental and numerical investigation of spherical food product during forced convection cooling. Measurement: Food, 3, 100006.
    Crossref


  19. Hussain, T., Singh, A. K., Mittal, A., Verma, A., & Alam, Z. (2020). Performance evaluation of vapor compression refrigeration system by varying air flow rates in air-cooled and evaporatively cooled condensers. International Journal of Energy for a Clean Environment, 21(1).
    Crossref


  20. Alam, Z., & Hussain, T. (2022). Experimental Exploration on Performance Advancement of Solid Desiccant Dehumidifier. IOP Conference Series: Materials Science and Engineering, 1224(1), 012011. doi:10.1088/1757-899x/1224/1/012011.
    Crossref


  21. Mandegari, M. A., & Pahlavanzadeh, H. (2009). Introduction of a new definition for effectiveness of desiccant wheels. Energy, 34(6), 797-803.
    Crossref


  22. Slayzak, S. J., & Ryan, J. P. (2000). Desiccant Dehumidification Wheel Test Guide. National Renewable Energy Laboratory. NERL/TP-550-26131.
    Google Scholar


  23. Ge, T. S., Ziegler, F., & Wang, R. Z. (2010). A mathematical model for predicting the performance of a compound desiccant wheel (A model of compound desiccant wheel). Applied Thermal Engineering, 30(8-9), 1005-1015.
    Crossref


  24. Angrisani, G., Minichiello, F., Roselli, C., & Sasso, M. (2011). Experimental investigation to optimise a desiccant HVAC system coupled to a small size cogenerator. Applied Thermal Engineering, 31(4), 506-512.
    Crossref


  25. Henning, H. M., Erpenbeck, T., Hindenburg, C., & Santamaria, I. S. (2001). The potential of solar energy use in desiccant cooling cycles. International journal of Refrigeration, 24(3), 220-229.
    Crossref


  26. Kline, S. J. (1953). Describing uncertainty in single sample experiments. Mech. Engineering, 75, 3-8.
    Crossref


  27. Angrisani, G., Minichiello, F., Roselli, C., & Sasso, M. (2012). Experimental analysis on the dehumidification and thermal performance of a desiccant wheel. Applied Energy, 92, 563-572.
    Crossref


  28. Yadav A (2012) PhD. thesis, NIT Kurukshetra, India




To view full paper, Download here .


Publishing with