CFD Analysis of Solid Desiccant Dehumidifier Wheel

Kishor Rambhad, Prafull Jondhale, Ruturaj Kambale, Virandra Jedhe, Ketan Thakare
International Journal of Analytical, Experimental and Finite Element Analysis
Volume 8: Issue 1, March 2021, pp 12-20


Author's Information

Kishor Rambhad 

Corresponding Author
Assistant Professor, Department of Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India
kishorsrambhad@gmail.com

Prafull Jondhale, Ruturaj Kambale, Virandra Jedhe, Ketan Thakare

Student, Department of Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India


Research Paper -- Peer Reviewed
Published online – 30 March 2021

Open Access article under Creative Commons License

Cite this article – Kishor Rambhad, Prafull Jondhale, Ruturaj Kambale, Virandra Jedhe, Ketan Thakare, “CFD Analysis of Solid Desiccant Dehumidifier Wheel”, International Journal of Analytical, Experimental and Finite Element Analysis, RAME Publishers, vol. 8, issue 1, pp. 12-20, March 2020.
https://doi.org/10.26706/ijaefea.1.8.20210302


Abstract:-
Desiccant cooling and dehumidification systems control both the air humidity as well as the operating cost by reducing the energy requirements of the supply air systems. This study used flow simulation CFD high resolution to better understand the vapor flow through complex porous media. The CFD simulation of the adsorption cooling system showed that the design could have beneficial effects on the performance of the system. The emphasis is on optimizing the process to remove the moisture, and the optimal process inflow velocity for the particular desiccant wheel model is determined to be between 1.5 and 2.5 m/s.
Index Terms:-
Adsorption rate, Desiccant wheel, Regeneration rate, Silica gel, Simulation, Solid Desiccant.
REFERENCES
  1. P. Mazzei, F. Minichiello, and D. Palma, “HVAC dehumidification systems for thermal comfort: A critical review,” Applied Thermal Engineering, vol. 25, no. 5–6. Pergamon, pp. 677–707, Apr. 01, 2005, doi: 10.1016/j.applthermaleng.2004.07.014.

  2. “Air Conditioned Space - an overview | ScienceDirect Topics.” https://www.sciencedirect.com/topics/engineering/air-conditioned-space (accessed May 31, 2021).

  3. H. Sharma, A. S. Choudhary, and K. S. Rambhad, “Solar Thermal Energy In India- A Review,” vol. 3, no. 11, pp. 1–4, 2017.

  4. L. Cai, D. Gao, T. Bin Chen, H. T. Liu, G. Di Zheng, and Q. W. Yang, “Moisture variation associated with water input and evaporation during sewage sludge bio-drying,” Bioresour. Technol., vol. 117, pp. 13–19, Aug. 2012, doi: 10.1016/j.biortech.2012.03.092.

  5. M. Indraganti, “Thermal comfort in naturally ventilated apartments in summer: Findings from a field study in Hyderabad, India,” Appl. Energy, vol. 87, no. 3, pp. 866–883, Mar. 2010, doi: 10.1016/j.apenergy.2009.08.042.

  6. M. M. Rafique, P. Gandhidasan, and H. M. S. Bahaidarah, “Liquid desiccant materials and dehumidifiers - A review,” Renewable and Sustainable Energy Reviews, vol. 56. Elsevier Ltd, pp. 179–195, Apr. 01, 2016, doi: 10.1016/j.rser.2015.11.061.

  7. A. A. Pesaran, T. R. Penney, and A. W. Czanderna, “Desiccant Cooling: State-of-the-Art Assessment,” Golden, CO (United States), Oct. 1992. doi: 10.2172/6925169.

  8. A. LaPotin, H. Kim, S. R. Rao, and E. N. Wang, “Adsorption-Based Atmospheric Water Harvesting: Impact of Material and Component Properties on System-Level Performance,” Acc. Chem. Res., vol. 52, no. 6, pp. 1588–1597, Jun. 2019, doi: 10.1021/acs.accounts.9b00062.

  9. K. S. Rambhad, P. V. Walke, and D. J. Tidke, “Solid desiccant dehumidification and regeneration methods - A review,” Renew. Sustain. Energy Rev., vol. 59, pp. 73–83, 2016, doi: 10.1016/j.rser.2015.12.264.

  10. K. S. Rambhad, V. P. Kalbande, and P. V Walke, “Solid Desiccant Dehumidification and Regeneration Techniques,” Int. J. Anal. Exp. Finite Elem. Anal., vol. 2, no. 1, pp. 1–5, 2015, [Online]. Available: https://www.rame.org.in/pdf/Volume 2/Vol 2 Issue 1/Vol 2 Issue 1 201501001 Published1.pdf.

  11. K. Rambhad, J. Dane, V. Joshi, S. Kulkarni, and R. Ghodke, “Simulation and Optimization of Silica Gel and Molecular Sieve Desiccant Wheel for Air Dehumidification,” vol. 5, no. December, pp. 11–27, 2020.

  12. K. S. Rambhad and P. V Walke, “An Experimental Investigation of Solar Assisted Air Heating for Solid Desiccant Regeneration using Parabolic trough Solar Concentrator,” Int. J. Anal. Exp. Finite Elem. Anal., vol. 4, no. 3, pp. 45–47, 2017, doi: 10.26706/ijaefea.3.4.20170803.

  13. K. S. Rambhad and P. V Walke, “Regeneration of composite desiccant dehumidifier by parabolic trough solar collector : An experimental investigation,” Mater. Today Proc., vol. 5, no. 11, pp. 24358–24366, 2018, doi: 10.1016/j.matpr.2018.10.231.

  14. S. Misha, S. Mat, M. H. Ruslan, and K. Sopian, “Review of solid / liquid desiccant in the drying applications and its regeneration methods,” Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 4686–4707, 2012, doi: 10.1016/j.rser.2012.04.041.

  15. L. Z. Zhang and J. L. Niu, “Performance comparisons of desiccant wheels for air dehumidification and enthalpy recovery,” vol. 22, pp. 1347–1367, 2002.


To view full paper, Download here .


To View Full Paper

Publishing with