Effect of FDM Process Parameters on the Mechanical Properties and Production Costs of 3D Printed PowerABS Samples

Menderes KAM, Ahmet İPEKÇİ, Ömer ŞENGÜL,
Volume 7: Issue 3, Sept 2020, pp 77-90


Author's Information
Menderes KAM1 
Corresponding Author
1Assistant Professor, Düzce University, Düzce, Turkey.
mendereskam@duzce.edu.tr

Ahmet İPEKÇİ2
2Lecturer, Düzce University, Düzce, Turkey.


Ömer ŞENGÜL3
2PhD Student, Düzce University, Düzce, Turkey.

Research Article -- Peer Reviewed
Published online – 30 September 2020

Open Access article under Creative Commons License

Cite this article – Menderes KAM, Ahmet İPEKÇİ, Ömer ŞENGÜL, “Effect of FDM Process Parameters on the Mechanical Properties and Production Costs of 3D Printed PowerABS Samplesw”, International Journal of Analytical, Experimental and Finite Element Analysis, RAME Publishers, vol. 7, issue 3, pp. 77-90, Sept 2020.
https://doi.org/10.26706/ijaefea.3.7.20200806


Abstract:-
The main objective of this study is to analyze of the effect of fused deposition modelling (FDM) printing process parameters on the mechanical properties, printing times and production costs of samples printed with Power Acrylonitrile Butadiene Styrene (PowerABS) filament using a three-dimensional (3D) printer. This study is primarily focused on the effects of the mechanical properties of 3D samples subjected to the influence of three factors; layer thickness (0.15, 0.2, and 0.25 mm), raster angle (15, 45, and 750), table orientation (flat, horizontal, and vertical). For the experiment study, analytical methods such as regression analysis, variance analysis (ANOVA), Signal / Noise (S / N) ratio were used to determine the effect of FDM printing parameters on the mechanical properties with Taguchi optimization method. The results showed that 45° raster angle the highest mechanical properties at each individual layer when compared to 15° and 75°. The results also found tensile strength to directly proportionate to layer thickness. As observed in the results, by improving the material properties, it will be possible to provide support for mechanical engineers and designers to reduce printing time, filament material use and printing costs.
Index Terms:-
FDM, mechanical properties, optimization, PowerABS, production cost, Taguchi
REFERENCES
  1. A. El Magri, K. El Mabrouk, S. Vaudreuil, H. Chibane, and M. E. Touhami
    Optimization of printing parameters for improvement of mechanical and thermal performances of 3D printed poly (ether ether ketone) parts
    Journal of Applied Polymer Science, 49087, 2020.
                                                                                                                                                   Crossref

  2. C. A. Murphy, and M. N.
    Collins microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing
    Polymer composites, 39(4), pp. 1311-1320, 2018.
                                                                                                                                                   Crossref
  3. M. Kam, H. Saruhan, and A. İpekçi
    Investigation the effects of 3d printer system vibrations on mechanical properties of the printed products
    Sigma journal of engineering and natural sciences, 36(3), pp. 655-666, 2018.
                                                                                                                                                  
  4. M. Kam, A. İpekçi, H. Saruhan
    Investigation of 3d printing filling structures effect on mechanical properties and surface roughness of pet-g material products
    Gaziosmanpaşa Bilimsel Araştırma Dergisi, 6, pp. 114-121, 2017.
                                                                                                                                                  
  5. D. Popescu, A. Zapciu, C. Amza, F. Baciu, R. Marinescu
    FDM process parameters influence over the mechanical properties of polymer specimens
    A review. Polymer Testing, 69, pp. 157-166, 2018.
                                                                                                                                                   Crossref
  6. Z. H. Kreemer
    Rapid Prototyping Using FDM Systems
    Handbook of Manufacturing Engineering and Technology RAMEPublisher, pp. 2471-2483, 2014.
                                                                                                                                                  
  7. J.Y. Wong, A.C. Pfahnl
    3D printing of surgical instruments for long-duration space missions
    Aviat Space Environ Med., 85 (7), pp. 758-763, 2014.
                                                                                                                                                   Crossref
  8. M. K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R. I. Campbell, I. Gibson, and F. Martina
    Design for additive manufacturing: trends, opportunities, considerations, and constraints
    CIRP Ann. - Manuf. Technol., 65 (2), pp. 737-760, 2016.
                                                                                                                                                   Crossref
  9. G.A.O. Adam, and D. Zimmer
    On design for additive manufacturing: evaluating geometrical limitations
    Rapid Prototyp. J., 21 (6), pp. 662-670, 2015.
                                                                                                                                                   Crossref
  10. A. Dorigato, V. Moretti, S. Dul, S. H. Unterberger, and A. Pegoretti
    Electrically conductive nanocomposites for fused deposition modelling
    Synthetic metals, 226, pp. 7-14, 2017.
                                                                                                                                                  
  11. X. Wang M. Jiang, Z. Zhou, J. Gou, and D. Hui,
    3D printing of polymer matrix composites: a review and prospective
    Composites Part B: Engineering, 110, pp. 442–458, 2017.
                                                                                                                                                   Crossref
  12. J. P. Kruth, G. Levy, F. Klocke, T. H. C. Childs
    Consolidation phenomena in laser and powder-bed based layered manufacturing
    Cirp annals, 56(2), pp. 730-759, 2007.
                                                                                                                                                   Crossref
  13. S. Dul, L. Fambri, and A. Pegoretti
    Fused deposition modelling with abs-graphene nanocomposites
    Composites Part A: Applied Science and Manufacturing, 85, pp. 181-191, 2016.
                                                                                                                                                   Crossref
  14. A. Salazar, A. Rico, J. Rodriguez, J. S. Escudero, R. Seltzer, F. Martin, E. Cutillas
    Monotonic loading and fatigue response of a bio-based polyamide pa11 and a petrol-based polyamide pa12 manufactured by selective laser sintering
    Europen Polymer Journal, 59, pp. 36-45, 2014.
                                                                                                                                                   Crossref
  15. B. M. Tymrak, M. Kreiger, J. M. Pearce
    Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions
    Materials & Design, 58, pp. 242-246, 2014.
                                                                                                                                                   Crossref
  16. R. J. Zaldivar, D. B. Witkin, T. Mclouth, D. N. Patel, K. Schmitt, J. P. Nokes
    Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-printed ultem® 9085 material
    Additive Manufacturing, 13, pp. 71-80, 2017.
                                                                                                                                                   Crossref
  17. G. S. Bual
    Methods to improve surface finish of parts produced by fused deposition modeling
    Manufacturing Science and Technology, 2(3), pp. 51-55, 2014.
                                                                                                                                                  
  18. L. M. Galantucci, I. Bodi, J. Kacani, F. Lavecchia
    Analysis of dimensional performance for a 3D open-source printer based on fused deposition modeling technique
    Procedia Cirp, 28, pp. pp. 82-87, 2015.
                                                                                                                                                   Crossref
  19. Z. Moza, K. Kitsakis, J. Kechagias, N. Mastorakis
    Optimizing dimensional accuracy of fused filament fabrication using taguchi design
    14th International Conference on Instrumentation, Measurement, Circuits and Systems, Salerno, Italy, 2015.
                                                                                                                                                  
  20. Eos material (2015)
    Pa12 (pa 2200 balance 1.0), 21.12.2019 tarihinde EOS material date center:.
                                                                                                                                                   Online
  21. J. W. Zhang, and A. H. Peng
    Process-parameter optimization for fused deposition modeling based on taguchi method
    In Advanced Materials Research, 538, pp. 444-447, 2012.
                                                                                                                                                  
  22. J. P. Davim
    Materials Forming and Machining: Research and Development
    Woodhead Publishing, 2015.
                                                                                                                                                  
  23. Riza, E. I., Budiyantoro, C., Nugroho, A. W
    Peningkatan kekuatan lentur produk 3D printing berbahan PetG dengan optimasi parameter proses menggunakan metode taguchi
    Media Mesin: Majalah Teknik Mesin, 21(2), pp. 66-75, 2020.
                                                                                                                                                   Crossref
  24. M., Kam, H. Saruhan, and A. İpekçi
    Investigation of surface treatment effect on mechanical properties of printed products by fused deposition modelling method
    IV. International Academic Research Congress, 2018.
                                                                                                                                                  
  25. M. Kam, H. Saruhan, and A. İpekçi,
    Surface treatments effect on surface roughness of printed products by fused deposition modelling method
    IV. International Academic Research Congress, 2018..
                                                                                                                                                  
  26. M. Kam, H. Saruhan, and A. İpekçi
    Determination of optimum printing parameters of printed products by open and closed type of 3D printer systems with different filament materials
    IV. International Academic Research Congress, 2018.
                                                                                                                                                  
  27. A. İpekçi, M. Kam and H. Saruhan
    Investigation of 3D printing occupancy rates effect on mechanical properties and surface roughness of PET-G material products
    Journal of New Results in Science, 7(2), pp. 1-8, 2018.
                                                                                                                                                   Crossref
  28. M. Kam, H. Saruhan, and A. İpekçi
    Investigation the Effect of 3D Printer System Vibrations on Surface Roughness of the Printed Products
    Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(2), pp. 147-157, 2019.
                                                                                                                                                   Crossref
  29. M. Kam, H. Saruhan, A. İpekçi “Farklı
    Doldurma Şekillerinin Üç Boyutlu Yazıcılarda Üretilen Ürünlerin Mukavemetine Etkisi
    Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(3), pp. 951-960, 2019.
                                                                                                                                                   Crossref

To view full paper, Download here .


To View Full Paper

Publishing with