Effect of FDM Process Parameters on the Mechanical Properties and Production Costs of 3D Printed PowerABS Samples
Menderes KAM, Ahmet İPEKÇİ, Ömer ŞENGÜL,
Volume 7: Issue 3, Sept 2020, pp 77-90
Author's Information
Menderes KAM1
Corresponding Author
1Assistant Professor, Düzce University, Düzce, Turkey.
mendereskam@duzce.edu.tr
Ahmet İPEKÇİ2
2Lecturer, Düzce University, Düzce, Turkey.
Ömer ŞENGÜL3
2PhD Student, Düzce University, Düzce, Turkey.
Abstract:-
The main objective of this study is to analyze of the effect of fused deposition modelling (FDM) printing process parameters on the mechanical properties, printing times and production costs of samples printed with Power Acrylonitrile Butadiene Styrene (PowerABS) filament using a three-dimensional (3D) printer. This study is primarily focused on the effects of the mechanical properties of 3D samples subjected to the influence of three factors; layer thickness (0.15, 0.2, and 0.25 mm), raster angle (15, 45, and 750), table orientation (flat, horizontal, and vertical). For the experiment study, analytical methods such as regression analysis, variance analysis (ANOVA), Signal / Noise (S / N) ratio were used to determine the effect of FDM printing parameters on the mechanical properties with Taguchi optimization method. The results showed that 45° raster angle the highest mechanical properties at each individual layer when compared to 15° and 75°. The results also found tensile strength to directly proportionate to layer thickness. As observed in the results, by improving the material properties, it will be possible to provide support for mechanical engineers and designers to reduce printing time, filament material use and printing costs.Index Terms:-
FDM, mechanical properties, optimization, PowerABS, production cost, TaguchiREFERENCES
-
A. El Magri, K. El Mabrouk, S. Vaudreuil, H. Chibane, and M. E. Touhami
Optimization of printing parameters for improvement of mechanical and thermal performances of 3D printed poly (ether ether ketone) parts
Journal of Applied Polymer Science, 49087, 2020.
Crossref -
C. A. Murphy, and M. N.
Collins microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing
Polymer composites, 39(4), pp. 1311-1320, 2018.
Crossref -
M. Kam, H. Saruhan, and A. İpekçi
Investigation the effects of 3d printer system vibrations on mechanical properties of the printed products
Sigma journal of engineering and natural sciences, 36(3), pp. 655-666, 2018.
-
M. Kam, A. İpekçi, H. Saruhan
Investigation of 3d printing filling structures effect on mechanical properties and surface roughness of pet-g material products
Gaziosmanpaşa Bilimsel Araştırma Dergisi, 6, pp. 114-121, 2017.
-
D. Popescu, A. Zapciu, C. Amza, F. Baciu, R. Marinescu
FDM process parameters influence over the mechanical properties of polymer specimens
A review. Polymer Testing, 69, pp. 157-166, 2018.
Crossref -
Z. H. Kreemer
Rapid Prototyping Using FDM Systems
Handbook of Manufacturing Engineering and Technology RAMEPublisher, pp. 2471-2483, 2014.
-
J.Y. Wong, A.C. Pfahnl
3D printing of surgical instruments for long-duration space missions
Aviat Space Environ Med., 85 (7), pp. 758-763, 2014.
Crossref -
M. K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R. I. Campbell, I. Gibson, and F. Martina
Design for additive manufacturing: trends, opportunities, considerations, and constraints
CIRP Ann. - Manuf. Technol., 65 (2), pp. 737-760, 2016.
Crossref -
G.A.O. Adam, and D. Zimmer
On design for additive manufacturing: evaluating geometrical limitations
Rapid Prototyp. J., 21 (6), pp. 662-670, 2015.
Crossref -
A. Dorigato, V. Moretti, S. Dul, S. H. Unterberger, and A. Pegoretti
Electrically conductive nanocomposites for fused deposition modelling
Synthetic metals, 226, pp. 7-14, 2017.
-
X. Wang M. Jiang, Z. Zhou, J. Gou, and D. Hui,
3D printing of polymer matrix composites: a review and prospective
Composites Part B: Engineering, 110, pp. 442–458, 2017.
Crossref -
J. P. Kruth, G. Levy, F. Klocke, T. H. C. Childs
Consolidation phenomena in laser and powder-bed based layered manufacturing
Cirp annals, 56(2), pp. 730-759, 2007.
Crossref -
S. Dul, L. Fambri, and A. Pegoretti
Fused deposition modelling with abs-graphene nanocomposites
Composites Part A: Applied Science and Manufacturing, 85, pp. 181-191, 2016.
Crossref -
A. Salazar, A. Rico, J. Rodriguez, J. S. Escudero, R. Seltzer, F. Martin, E. Cutillas
Monotonic loading and fatigue response of a bio-based polyamide pa11 and a petrol-based polyamide pa12 manufactured by selective laser sintering
Europen Polymer Journal, 59, pp. 36-45, 2014.
Crossref -
B. M. Tymrak, M. Kreiger, J. M. Pearce
Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions
Materials & Design, 58, pp. 242-246, 2014.
Crossref -
R. J. Zaldivar, D. B. Witkin, T. Mclouth, D. N. Patel, K. Schmitt, J. P. Nokes
Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-printed ultem® 9085 material
Additive Manufacturing, 13, pp. 71-80, 2017.
Crossref -
G. S. Bual
Methods to improve surface finish of parts produced by fused deposition modeling
Manufacturing Science and Technology, 2(3), pp. 51-55, 2014.
-
L. M. Galantucci, I. Bodi, J. Kacani, F. Lavecchia
Analysis of dimensional performance for a 3D open-source printer based on fused deposition modeling technique
Procedia Cirp, 28, pp. pp. 82-87, 2015.
Crossref -
Z. Moza, K. Kitsakis, J. Kechagias, N. Mastorakis
Optimizing dimensional accuracy of fused filament fabrication using taguchi design
14th International Conference on Instrumentation, Measurement, Circuits and Systems, Salerno, Italy, 2015.
-
Eos material (2015)
Pa12 (pa 2200 balance 1.0), 21.12.2019 tarihinde EOS material date center:.
Online -
J. W. Zhang, and A. H. Peng
Process-parameter optimization for fused deposition modeling based on taguchi method
In Advanced Materials Research, 538, pp. 444-447, 2012.
-
J. P. Davim
Materials Forming and Machining: Research and Development
Woodhead Publishing, 2015.
-
Riza, E. I., Budiyantoro, C., Nugroho, A. W
Peningkatan kekuatan lentur produk 3D printing berbahan PetG dengan optimasi parameter proses menggunakan metode taguchi
Media Mesin: Majalah Teknik Mesin, 21(2), pp. 66-75, 2020.
Crossref -
M., Kam, H. Saruhan, and A. İpekçi
Investigation of surface treatment effect on mechanical properties of printed products by fused deposition modelling method
IV. International Academic Research Congress, 2018.
-
M. Kam, H. Saruhan, and A. İpekçi,
Surface treatments effect on surface roughness of printed products by fused deposition modelling method
IV. International Academic Research Congress, 2018..
-
M. Kam, H. Saruhan, and A. İpekçi
Determination of optimum printing parameters of printed products by open and closed type of 3D printer systems with different filament materials
IV. International Academic Research Congress, 2018.
-
A. İpekçi, M. Kam and H. Saruhan
Investigation of 3D printing occupancy rates effect on mechanical properties and surface roughness of PET-G material products
Journal of New Results in Science, 7(2), pp. 1-8, 2018.
Crossref -
M. Kam, H. Saruhan, and A. İpekçi
Investigation the Effect of 3D Printer System Vibrations on Surface Roughness of the Printed Products
Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(2), pp. 147-157, 2019.
Crossref -
M. Kam, H. Saruhan, A. İpekçi “Farklı
Doldurma Şekillerinin Üç Boyutlu Yazıcılarda Üretilen Ürünlerin Mukavemetine Etkisi
Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(3), pp. 951-960, 2019.
Crossref
To view full paper, Download here .