A VEM–based mesh–adaptive strategy for potential problems

Annamaria Mazzia and Flavio Sartoretto
Volume 6: Issue 1, March 2019, pp 30-39


Author's Information
Annamaria Mazzia1 
Corresponding Author
1Dipartimento di Ingegneria Civile, Edile e Ambientale, Università di Padova, via F. Marzolo 9, 35131 Padova, Italy
annamaria.mazzia@unipd.it

Flavio Sartoretto2
2DAIS Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre VE, Italy


Research Article -- Peer Reviewed
Published online – 01 April 2019

Open Access article under Creative Commons License

Cite this article – Annamaria Mazzia, Flavio Sartoretto, “A VEM–based mesh–adaptive strategy for potential problems”, International Journal of Analytical, Experimental and Finite Element Analysis, RAME Publishers, vol. 6, issue 1, pp. 30-39, March 2019.
https://doi.org/10.26706/ijaefea.1.6.20190301


Abstract:-
The Virtual Element Method (VEM) is an evolution of the mimetic finite difference method which overcomes many limitations affecting classic Finite Element Methods (FEM). VEM for 2D problems allows for exploiting meshes consisting of any polygonal elements. No limitations on their internal angles are needed. Hanging nodes are easily treated. Notably, VEM is well apt to mesh–adaptive algorithms. In this paper we detail an implementation of mesh–adaptive VEM for potential problems. We suggest a fresh, promising approach. We show on suitable test problems that a gain in efficiency can be obtained, respect to uniform, fine discretizations.
Index Terms:-
VEM, MESH ADAPTIVITY, POISSON PROBLEM
REFERENCES
[1] P. F. Antonietti, L. Beirão da Veiga, D. Mora, and M. Verani. A stream virtual element formulation of the stokes problem on polygonal meshes. SIAM Journal on Numerical Analysis, 52(1):386–404, 2014.

[2] P. F. Antonietti, L. Beirão da Veiga, S. Scacchi, and M. Verani. A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM Journal on Numerical Analysis, 54(1):34–56, 2016.

[3] P. F. Antonietti, M. Bruggi, S. Scacchi, and M. Verani. On the Virtual Element Method for topology optimization on polygonal meshes: A numerical study. Computers and Mathematics with Applications, 74(5):1091–1109, 2017.

[4] P. F. Antonietti, S. Giani, and P. Houston. hp–Version Composite Discontinuous Galerkin Methods for elliptic problems on complicated domains. SIAM J. Sci. Comput., 35(3):A1417–A1439, 2013.

[5] P. F. Antonietti, G. Manzini, and M. Verani. The fully nonconforming Virtual Element method for biharmonic problems. Mathematical Models & Methods in Applied Sciences, 28(2), 2018.

[6] P. F. Antonietti, L. Mascotto, and M. Verani. A multigrid algorithm for the p–version of the Virtual Element method. ESAIM: Mathematical Modelling and Numerical Analysis, 2018. In press.

[7] B. Ayuso de Dios, K. Lipnikov, and G. Manzini. The nonconforming virtual element method. ESAIM: Mathematical Modelling and Numerical Analysis, 50(3):879–904, 2016.

[8] F. Bassi, L. Botti, and A. Colombo. Agglomeration-based physical frame DG discretizations: An attempt to be mesh free. Math. Models Methods Appl. Sci., 24(8):1495–1539, 2014.

[9] R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. In A. Iserles, editor, Acta Numerica, pages 1–102. Cambridge University Press, Cambridge, 2001.

[10] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. Basic principles of virtual element methods. Mathematical Models & Methods in Applied Sciences, 23:119–214, 2013.

[11] L. Beirão da Veiga, F. Brezzi, and L. D. Marini. Virtual elements for linear elasticity problems. SIAM Journal on Numerical Analysis, 51(2):794–812, 2013.

[12] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: Mathematical Modelling and Numerical Analysis, 50(3):727–747, 2016.

[13] L. Beirão da Veiga, A. Chernov, L. Mascotto, and A. Russo. Basic principles of hp virtual elements on quasiuniform meshes. Mathematical Models & Methods in Applied Sciences, 26(8):1567–1598, 2016.

[14] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. Arbitrary order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM Journal on Numerical Analysis, 49(5):1737–1760, 2011.

[15] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. The Mimetic Finite Di[30] A. Cangiani, G. Manzini, A. Russo, and N. Sukumar. Hourglass stabilization of the virtual element method. International Journal on Numerical Methods in Engineering, 102(3-4):404– 436, 2015.

[16] L. Beirão da Veiga, C. Lovadina, and D. Mora. A virtual element method for elastic and inelastic problems on polytope meshes. Computer Methods in Applied Mechanics and Engineering, 295:327–346, 2015.

[17] L. Beirão da Veiga and G. Manzini. A virtual element method with arbitrary regularity. IMA Journal on Numerical Analysis, 34(2):782–799, 2014. DOI: 10.1093/imanum/drt018, (first published online 2013).

[18] L. Beirão da Veiga and G. Manzini. Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis, 49:577–599, 2015.

[19] L. Beirão da Veiga, G. Manzini, and M. Putti. Post-processing of solution and flux for the nodal mimetic finite di

[31] A. Cangiani, G. Manzini, and O. Sutton. Conforming and nonconforming virtual element methods for elliptic problems. IMA Journal on Numerical Analysis, 37:1317–1354, 2017. (online August 2016).

[32] C. Carstensen, M. Eigel, R. H. W. Hoppe, and C. Löbhard. A review of unified a posteriori finite element error control. Numer. Math. Theor. Meth. Appl., pages 509–558, 2012.

[33] B. Cockburn, D. A. Di Pietro, and A. Ern. Bridging the Hybrid High-order and Hybridizable Discontinuous Galerkin Methods. ESAIM Math. Model. Numer. Anal., 50(3):635–650, 2016.

[34] D. A. Di Pietro, J. Droniou, and G. Manzini. Discontinuous skeletal gradient discretisation methods on polytopal meshes. Journal of Computational Physics, 355:397–425, 2018.

[35] D. A. Di Pietro, A. Ern, and S. Lemaire. An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math., 14(4):461–472, 2014.

[36] W. Dörfler. A convergent adaptive algorithm for poisson’s equation. SIAM J. Numer. Anal., 33(3):1106–1124, June 1996.

[37] J. Droniou. Finite volume schemes for diffusion equations: Introduction to and review of modern methods. Mathematical Models and Methods in Applied Sciences, 24(08):1575–1619, 2014.

[38] J. Droniou, R. Eymard, T. Gallouet, and R. Herbin. Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci., 23(13):2395–2432, 2013.

[39] S. Funken, D. Praetorius, and P. Wissgott. Efficient implementation of adaptive P1-FEM in Matlab. Computational Methods in Applied Mathematics, 11(4), 2011.

[40] F. Gardini and G. Vacca. Virtual element method for second order elliptic eigenvalue problems. IMA Journal on Numerical Analysis, 2017. Preprint, arXiv:1610.03675.

[41] T. Grätsch and K.-J. Bathe. A posteriori error estimation techniques in practical finite element analysis. Computers and Structures, pages 235–265, 2005.

[42] V. Gyrya, K. Lipnikov, and G. Manzini. The arbitrary order mixed mimetic finite difference method for the diffusion equation. ESAIM: Mathematical Modelling and Numerical Analysis, 50(3):851–877, 2016.

[43] B. B. T. Kee, G. R. Liu, G. Y. Zhang, and C. Lu. A residual based error estimator using radial basis functions. Finite Elem. Anal. Des., 44(9-10):631–645, June 2008.

[44] K. Lipnikov and G. Manzini. A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation. Journal of Computational Physics, 272:360–385, 2014.

[45] K. Lipnikov, G. Manzini, J. D. Moulton, and M. Shashkov. The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient. Journal of Computational Physics, 305:111 – 126, 2016.

[46] K. Lipnikov, G. Manzini, and M. Shashkov. Mimetic finite difference method. Journal of Computational Physics, 257 – Part B:1163–1227, 2014. Review paper.

[47] G. Manzini, K. Lipnikov, J. D. Moulton, and M. Shashkov. Convergence analysis of the mimetic finite difference method for elliptic problems with staggered discretizations of diffusion coefficients. SIAM Journal on Numerical Analysis, 55(6):2956–2981, 2017.

[48] G. Manzini, A. Russo, and N. Sukumar. New perspectives on polygonal and polyhedral finite element methods. Mathematical Models & Methods in Applied Sciences, 24(8):1621–1663, 2014.

[49] R. H. Nochetto, K. G. Siebert, and A. Veeser. Theory of adaptive finite element methods: An introduction. In R. DeVore and A. Kunoth, editors, Multiscale, Nonlinear and Adaptive Approximation: Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday, pages 409–542. SpringerBerlinHeidelberg, Berlin, Heidelberg, 2009.

[50] S. Rjasanow and S. Weißer. Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal., 50(5):2357–2378, 2012.

[51] N. Sukumar and A. Tabarraei. Conforming Polygonal Finite Elements. Internat. J. Numer. Methods Engrg., 61(12):2045–2066, 2004.

[52] A. Tabarraei and N. Sukumar. Extended Finite Element Method on polygonal and quadtree meshes. Comput. Methods Appl. Mech. Engrg., 197(5):425–438, 2008.

[53] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes. PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim., 45(3):309– 328, 2012.

[54] O. ˘Certík, F. Gardini, G. Manzini, and G. Vacca. The virtual element method for eigenvalue problems with potential terms on polytopic meshes. Applications of Mathematics, 63(3):333–365, 2018.

[55] G. Vacca. An H1-conforming virtual element for Darcy and Brinkman equations. Mathematical Models & Methods in Applied Sciences, 28(1):159–194, 2018.


To view full paper, Download here


To View Full Paper

Publishing with