Improving Communication Protocols Based on Crucial Data Transmission Security for IoT Techniques

Azhar w. Talab
International Journal of Computational and Electronic Aspects in Engineering
Volume 6: Issue 1, March 2025, pp 1-11


Author's Information
Azhar w. Talab1 
Corresponding Author
1Computer Engineering Department, Northern Technical University, Mosul, Iraq
azhar.w@ntu.edu.iq

Research Paper -- Peer Research Paper
First online on – 10 March 2025

Open Access article under Creative Commons License

Cite this article –Azhar w. Talab“Improving Communication Protocols Based on Crucial Data Transmission Security for IoT Techniques”, International Journal of Computational and Electronic Aspects in Engineering, RAME Publishers, vol. 6, Issue 1, pp. 1-11, 2025.
https://doi.org/10.26706/ijceae.6.1.20250203


Abstract:-
Communication protocols need to be more reliable and efficient since the Internet of Things (IoT) is growing exponentially, changing how devices interact. IoT ecosystems often comprise many devices with varying degrees of processing power, low energy storage, and high network requirements. These elements provide serious obstacles to current communication methods, including latency issues, wasteful bandwidth use, and security flaws. The main goal of this research is to improve communication protocols specifically designed for IoT situations. The suggested improvements seek to solve the shortcomings of conventional protocols by putting adaptive processes, lightweight structures, and cutting-edge security measures into place. The project looks for methods to optimize bandwidth usage, lower latency, and encourage smooth device interoperability. It also emphasizes how crucial data transmission security is to defending against intrusions on IoT. The research evaluates how well the enhanced protocols work in various IoT contexts using simulations, theoretical analysis, and hands-on testing. The results show how these streamlined protocols could allow for faster information sharing, less consumption of energy, as well as scalable IoT implementations.
Index Terms:-
Communication Protocols, Internet of Things (IoT), Data Security
REFERENCES
  1. J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, "A Survey of Communication Protocols for Internet of Things and Related Challenges of Fog and Cloud Computing Integration," ACM Computing Surveys, vol. 1, no. 1, pp. 1-30, Feb. 2019. doi: 10.1155/2018/5349894.

  2. Mohammed Fareed Mahdi,” Revolutionizing the Future Investigating the Role of Smart Devices In IOT” International Journal of Computational and Electronic Aspects in Engineering,VOL.5 Issue.1January 2024, pp 1-15

  3. M. K. Hasan, Z. Weichen, N. Safie, F. R. A. Ahmed, and T. M. Ghazal, "A Survey on Key Agreement and Authentication Protocol for Internet of Things Application," IEEE Access, vol. 12, pp. 61642-61661, Apr. 2024. doi: 10.1109/ACCESS.2024.3393567.

  4. N. Abosata, S. Al-Rubaye, G. Inalhan, and C. Emmanouilidis, "Internet of Things for System Integrity: A Comprehensive Survey on Security, Attacks and Countermeasures for Industrial Applications," Sensors, vol. 21, no. 11, p. 3654, May 2021. doi: 10.3390/s21113654.

  5. A. Glória, F. Cercas, and N. Souto, "Comparison of Communication Protocols for Low Cost Internet of Things Devices," in Proceedings of the SEEDA-CECNSM Conference, Lisbon, Portugal, Sept. 2017. doi: 10.23919/SEEDA-CECNSM.2017.8088226.

  6. F. Xia, L. T. Yang, L. Wang, and A. Vinel, "A Survey on the IETF Protocol Suite for the Internet of Things: Standards, Challenges, and Opportunities," International Journal of Communication Systems, vol. 25, no. 10, pp. 1101-1102, Dec. 2012. doi: 10.1002/dac.2417.

  7. S. Bhimshetty and V. I. Agughasi, "Energy-efficient deep Q-network: reinforcement learning for efficient routing protocol in wireless internet of things," Indonesian Journal of Electrical Engineering and Computer Science, vol. 33, no. 2, pp. 971-980, Feb. 2024. doi: 10.11591/ijeecs.v33.i2.pp971-980.

  8. E. Lee, Y.-D. Seo, S.-R. Oh, and Y.-G. Kim, "A Survey on Standards for Interoperability and Security in the Internet of Things," IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1020-1045, Feb

  9. Z. Sheng, S. Yang, Y. Yu, A. V. Vasilakos, J. A. McCann, and K. K. Leung, "A Survey on the IETF Protocol Suite for the Internet of Things: Standards, Challenges, and Opportunities," IEEE Wireless Communications, vol. 20, no. 6, pp. 91-98, Dec. 2013. doi: 10.1109/MWC.2013.6700124.

  10. V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-Zarate, "A Survey on Application Layer Protocols for the Internet of Things," International Journal of Communication Systems, vol. 25, no. 10, pp. 1101-1102, Dec. 2012. doi: 10.1002/dac.2417.

  11. A. Triantafyllou, P. Sarigiannidis, and T. D. Lagkas, "Network Protocols, Schemes, and Mechanisms for Internet of Things (IoT): Features, Open Challenges, and Trends," Wireless Communications and Mobile Computing, vol. 2018, Article ID 5349894, 2018. doi: 10.1155/2018/5349894.

  12. Varga, P., Blomstedt, F., Ferreira, L. L., & Eliasson, J. (2017). Making system of systems interoperable—The core components of the Arrowhead Framework. Journal of Network and Computer Applications, 81, 85-95.

  13. Bormann, C., Castellani, A. P., & Shelby, Z. (2012). CoAP: An application protocol for billions of tiny internet nodes. IEEE Internet Computing, 16(2), 62-67.

  14. Sye Loong Keoh, Sandeep S. Kumar, et al. (2014). Lightweight security solutions for the Internet of Things: A standardization perspective. IEEE Internet of Things Journal, 1(2), 99-112.

  15. Banks, A., & Gupta, R. (2014). MQTT Version 3.1.1. OASIS Standard. Retrieved from https://mqtt.org.

  16. Ibarra-Esquer, J. E., et al. (2017). IoT for global development to achieve the United Nations Sustainable Development Goals: The IoT taxonomies. IEEE Access, 4, 3668-3679.

  17. Chen, J., & Kunz, T. (2016). Performance evaluation of IoT protocols under a constrained wireless access network. 2016 International Conference on Selected Topics in Mobile and Wireless Networking.

  18. Gerodimos, A., Maglaras, L., Ferrag, M. A., Ayres, N., & Kantzavelou, I. (2022). IoT: Communication protocols and security threats. Internet of Things and Cyber-Physical Systems, 3, 1-13. https://doi.org/10.1016/j.iotcps.2022.12.003

  19. Li, C., Wang, J., Wang‎, S., & Zhang, Y. (2024). A review of IoT applications in healthcare. Neurocomputing, 565, 127017. https://doi.org/10.1016/j.neucom.2023.127017

  20. Seoane, V., Garcia-Rubio, C., Almenares, F., & Campo, C. (2021). Performance evaluation of CoAP and MQTT with security support for IoT environments. Computer Networks, 197, 108338. https://doi.org/10.1016/j.comnet.2021.108338

  21. Tariq, M. A., Khan, M., Raza Khan, M. T., & Kim, D. (2019). Enhancements and Challenges in CoAP—A Survey. Sensors, 20(21), 6391. https://doi.org/10.3390/s20216391

  22. Bayılmış, C., Ebleme, M. A., Çavuşoğlu, Ü., Küçük, K., & Sevin, A. (2022). A survey on communication protocols and performance evaluations for Internet of Things. Digital Communications and Networks, 8(6), 1094-1104. https://doi.org/10.1016/j.dcan.2022.03.013

  23. Aldin, H. N. S., Ghods, M. R., Nayebipour, F., & Torshiz, M. N. (2023). A comprehensive review of energy harvesting and routing strategies for IoT sensors sustainability and communication technology. Sensors International, 5, 100258. https://doi.org/10.1016/j.sintl.2023.100258

  24. Stanco, G., Navarro, A., Frattini, F., Ventre, G., & Botta, A. (2024). A comprehensive survey on the security of low power wide area networks for the Internet of Things. ICT Express, 10(3), 519-552. https://doi.org/10.1016/j.icte.2024.03.003

  25. Safi, H., Jehangiri, A. I., Ahmad, Z., Alramli, O. I., & Algarni, A. (2024). Design and Evaluation of a Low-Power Wide-Area Network (LPWAN)-Based Emergency Response System for Individuals with Special Needs in Smart Buildings. Sensors (Basel, Switzerland), 24(11), 3433. https://doi.org/10.3390/s24113433

  26. Alqurashi, H., Bouabdallah, F., & Khairullah, E. (2022). SCAP SigFox: A Scalable Communication Protocol for Low-Power Wide-Area IoT Networks. Sensors, 23(7), 3732. https://doi.org/10.3390/s23073732

  27. Bakare, M. S., Abdulkarim, A., Shuaibu, A. N., & Muhamad, M. M. (2024). Energy management controllers: Strategies, coordination, and applications. Energy Informatics, 7(1), 1-37. https://doi.org/10.1186/s42162-024-00357-9

  28. Lamport, L., Shostak, R., & Pease, M. (1982). "The Byzantine Generals Problem." ACM Transactions on Programming Languages and Systems, 4(3), 382-401.

  29. Al-Fares, M., Loukissas, A., & Vahdat, A. (2008). "A Scalable, Commodity Data Center Network Architecture." ACM SIGCOMM Computer Communication Review, 38(4), 63-74.

  30. Dimitri Belli, Paolo Barsocchi, Filippo Palumbo “A meta modeling-based interoperability and integration testing platform for IoT systems,” Journal Name, vol. x, no. y, pp. xx-xx, Year

  31. Amir Torab-Miandoab, Taha Samad-Soltani, Ahmadreza Jodati, Peyman Rezaei “Interoperability of heterogeneous health information systems: a systematic literature review,” BMC Medical Informatics and Decision Making, vol. 23, no. 18, 2023

  32. Miorandi, D., Sicari, S., Pellegrini, P., & Chlamtac, I. (2012). "Internet of Things: Vision, Applications and Research Challenges." Ad Hoc Networks, 10(7), 1497-1516.

  33. Sadeghi, A., Wachsmann, C., & Waidner, M. (2015). "Security and Privacy Challenges in Industrial Internet of Things." 2015 8th International Conference on the Network of the Future (NoF), 1-6.

  34. H. N. S. Aldin, M. R. Ghods, F. Nayebipour, and M. N. Torshiz, "A comprehensive review of energy harvesting and routing strategies for IoT sensors sustainability and communication technology," Sensors International, vol. 5, p. 100258, Jan. 2024, doi: 10.1016/j.sintl.2023.100258.

  35. M. H. Alsharif, A. H. Kelechi, A. Jahid, R. Kannadasan, M. K. Singla, J. Gupta, and Z. W. Geem, "A comprehensive survey of energy-efficient computing to enable sustainable massive IoT networks," Alexandria Engineering Journal, vol. 91, pp. 12-29, Mar. 2024, doi: 10.1016/j.aej.2024.01.067.

  36. M. H. Alsharif, A. H. Kelechi, A. Jahid, R. Kannadasan, M. K. Singla, J. Gupta, and Z. W. Geem, "A comprehensive survey of energy-efficient computing to enable sustainable massive IoT networks," Alexandria Engineering Journal, vol. 91, pp. 12-29, Mar. 2024, doi: 10.1016/j.aej.2024.01.067.

  37. A. Rovira-Sugranes, A. Razi, F. Afghah, and J. Chakareski, "A review of AI-enabled routing protocols for UAV networks: Trends, challenges, and future outlook," Computer Networks, vol. 202, p. 109-123, 2022, doi: 10.1016/j.comnet.2022.109123.

  38. Sabina Szymoniak, Sabina Szymoniak, Sabina Szymoniak "Defense and Security Mechanisms in the Internet of Things: A Review," Open Access, 7 January 2025

  39. Shahid Allah Bakhsh , Muhammad Almas Khan , Fawad Ahmed a, Mohammed S. Alshehri , Hisham Ali , Jawad Ahmad "Enhancing IoT Network Security Through Deep Learning-Powered Intrusion Detection System," *Open Access*, vol. 24, December 2023

  40. Stallings, W. Data and Computer Communications. Pearson Education. (2021).

  41. Iyengar, M Thomson, ‏RFC 9000: "QUIC: A UDP-Based Multiplexed and Secure Transport Protocol" 2070-172, March 2021, IETF.

  42. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.Shor, P. W. (1997). "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer." SIAM Journal on Computing.

  43. Alotaibi, N. S., Sayed Ahmed, H. I., M Kamel, S. O., & ElKabbany, G. F. (2024). Secure Enhancement for MQTT Protocol Using Distributed Machine Learning Framework. Sensors (Basel, Switzerland), 24(5), 1638. https://doi.org/10.3390/s24051638

  44. M. Houichi, A. Ben Saad, and A. Al-Mamary, "Cyber Security within Smart Cities: A Comprehensive Study and a Novel Intrusion Detection-Based Approach," Computers, Materials & Continua, vol. 81, no. 1, pp. 393-441, Oct. 2024. doi: 10.32604/cmc.2024.054007.

  45. Farooq, M. S., Abdullah, M., Riaz, S., Alvi, A., Rustam, F., Flores, M. A., Galán, J. C., Samad, M. A., & Ashraf, I. (2022). A Survey on the Role of Industrial IoT in Manufacturing for Implementation of Smart Industry. Sensors, 23(21), 8958. https://doi.org/10.3390/s23218958

  46. Latif, S., Driss, M., Boulila, W., Jamal, S. S., Idrees, Z., & Ahmad, J. (2021). Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions. Sensors (Basel, Switzerland), 21(22), 7518. https://doi.org/10.3390/s21227518

  47. Zahoor, S., & Mir, R. N. (2021). Resource management in pervasive Internet of Things: A survey. Journal of King Saud University - Computer and Information Sciences, 33(8), 921-935. https://doi.org/10.1016/j.jksuci.2018.08.014

  48. Li, C., Wang, J., Wang‎, S., & Zhang, Y. (2024). A review of IoT applications in healthcare. Neurocomputing, 565, 127017. https://doi.org/10.1016/j.neucom.2023.127017

  49. Abdulmalek, S., Nasir, A., Jabbar, W. A., M Almuhaya, M. A., Bairagi, A. K., Al-Masrur Khan, M., & Kee, H. (2022). IoT-Based Healthcare-Monitoring System towards Improving Quality of Life: A Review. Healthcare, 10(10), 1993. https://doi.org/10.3390/healthcare10101993

  50. Pradip Balbudhe, Disha Sune, Manjiri Kapkar, Shivani Meshram, Vidya Kaikade, Swati panse.” Internet of Things (IoT) Based Smart Health Monitoring System – A Case Study” International Journal of Computational and Electronic Aspects in Engineering. Volume 2: Issue 3, August 2021, pp 91-96

  51. Rajak, P., Ganguly, A., Adhikary, S., & Bhattacharya, S. (2023). Internet of Things and smart sensors in agriculture: Scopes and challenges. Journal of Agriculture and Food Research, 14, 100776. https://doi.org/10.1016/j.jafr.2023.100776

  52. Akhter, R., & Sofi, S. A. (2022). Precision agriculture using IoT data analytics and machine learning. Journal of King Saud University - Computer and Information Sciences, 34(8), 5602-5618. https://doi.org/10.1016/j.jksuci.2021.05.013

  53. Rohini Pochhi, Sandeep Thakre, Balwant Bansod” Using wireless sensor network for monitoring and controlling of farm” International Journal of Computational and Electronic Aspects in Engineering. Volume 2: Issue 1, March 2021, pp 22-25

  54. A. Al-Dulaimy, Y. Sharma, M. G. Khan, and J. Taheri, "Introduction to Edge Computing," in *Edge Computing: Models, Technologies and Applications*, June 2020. [Online]. Available: http://www.es.mdu.se/publications/6093-

  55. Ergen, M., Saoud, B., Shayea, I., El-Saleh, A. A., Ergen, O., Inan, F., & Tuysuz, M. F. (2024). Edge computing in future wireless networks: A comprehensive evaluation and vision for 6G and beyond. ICT Express, 10(5), 1151-1173. https://doi.org/10.1016/j.icte.2024.08.007

  56. Mohammed ELHajj. Enhancing Communication Networks in the New Era with Artificial Intelligence: Techniques, Applications, and Future Directions. Network, 5(1), 1. https://doi.org/10.3390/network5010001

  57. Mata, J., De Miguel, I., Durán, R. J., Merayo, N., Singh, S. K., Jukan, A., & Chamania, M. (2018). Artificial intelligence (AI) methods in optical networks: A comprehensive survey. Optical Switching and Networking, 28, 43-57. https://doi.org/10.1016/j.osn.2017.12.006

  58. Almarri, S., & Aljughaiman, A. (2023). Blockchain Technology for IoT Security and Trust: A Comprehensive SLR. Sustainability, 16(23), 10177. https://doi.org/10.3390/su162310177

  59. Rai, H. M., Shukla, K. K., Tightiz, L., & Padmanaban, S. (2024). Enhancing data security and privacy in energy applications: Integrating IoT and blockchain technologies. Heliyon, 10(19), e38917. https://doi.org/10.1016/j.heliyon.2024.e38917

  60. Pons, M., Valenzuela, E., Rodríguez, B., & Arturo, J. (2022). Utilization of 5G Technologies in IoT Applications: Current Limitations by Interference and Network Optimization Difficulties—A Review. Sensors, 23(8), 3876. https://doi.org/10.3390/s23083876

  61. Salar Jamal Rashid, Ahmed Maamoon Alkababji & AbdulSattar Mohammed Khidhir(2021). ‘Communication and Network Technologies of IoT in Smart Building: A Survey ‘,NTU JOURNAL OF ENGINEERING AND TECHNOLOGY. E-ISSN:2788-998X.

  62. Mazurczyk, W., Bisson, P., Jover, R. P., Nakao, K., & Cabaj, K. (2020). Special issue on Advancements in 5G Networks Security. Future Generation Computer Systems, 110, 314-316. https://doi.org/10.1016/j.future.2020.04.043

  63. Attaran, M. (2021). The impact of 5G on the evolution of intelligent automation and industry digitization. Journal of Ambient Intelligence and Humanized Computing, 14(5), 5977. https://doi.org/10.1007/s12652-020-02521-x

  64. Dangi, R., Lalwani, P., Choudhary, G., You, I., & Pau, G. (2021). Study and Investigation on 5G Technology: A Systematic Review. Sensors (Basel, Switzerland), 22(1), 26. https://doi.org/10.3390/s22010026

  65. Jain, H., Chamola, V., & Jain, Y. (2020). 5G network slice for digital real-time healthcare system powered by network data analytics. Internet of Things and Cyber-Physical Systems, 1, 14-21. https://doi.org/10.1016/j.iotcps.2021.12.001

  66. Zahoor, S., Ahmad, I., Ben Othman, M. T., Mamoon, A., Rehman, A. U., Shafiq, M., & Hamam, H. (2022). Comprehensive Analysis of Network Slicing for the Developing Commercial Needs and Networking Challenges. Sensors (Basel, Switzerland), 22(17), 6623. https://doi.org/10.3390/s22176623

  67. Alhakam Ayad Salih” Improved Security and Handover Technique in (4G) LTE” International Journal of Computational and Electronic Aspects in Engineering. Volume 3: Issue 4, December 2022, pp 76-83

  68. Dangi, R., Jadhav, A., Choudhary, G., Dragoni, N., Mishra, M. K., & Lalwani, P. (2022). ML-Based 5G Network Slicing Security: A Comprehensive Survey. Future Internet, 14(4), 116. https://doi.org/10.3390/fi14040116

  69. Abhita Gokhale, Labdhi Gada, Kolambi Narula, Amol Jogalekar" Software Defined Networking Towards 5G Network "International Journal of Computational and Electronic Aspects in Engineering. Volume 4: Issue 3, July-September 2023, pp 68-77

  70. Westbrook, J. I., Braithwaite, J., Georgiou, A., Ampt, A., Creswick, N., Coiera, E., & Iedema, R., Multimethod Evaluation of information and Communication Technologies in Health in the context of wicked Problems and Sociotechnical Theory., Vols. 14(6), 746–755. , Journal of the American Medical Informatics Association, 2007.

  71. O'Keeffe, G. S., & Clarke-Pearson, K. , The impact of social media on children, adolescents, and familie, Vols. 127(4), 800–804., Pediatrics, 2011.

  72. To view full paper, Download here


Publishing with