Enhancing MRI Brain Tumor Classification with a Novel Hybrid PCA+RST Feature Selection Approach: Methodology and Comparative Analysis
Amjad Mahmood Hadi
International Journal of Computational and Electronic Aspects in Engineering
Volume 5: Issue
3, September 2024, pp 116-130
Author's Information
Amjad Mahmood Hadi1
Corresponding Author
1Computer Center, Al Muthanna University, Samawah, Iraq
amjad@mu.edu.iq
Abstract:-
Being a critical health challenge, understanding how to classify these brain tumours by using MRI will help the patient get proper treatment. In this work, a new hybrid model is proposed by integrating both Principal Component Analysis (PCA) and Rough Set Theory (RST) approaches for brain tumor classification from MRI images. Our strategy of PCA and RST aims at data dimensionality reduction and feature selection function for tumor classification fine. The hybrid method was also validated with ADNT and OASIS MRI datasets, demonstrating its effectiveness. The first step of image processing was segmentation to delimitate regions of interest, which were subsequently used for feature extraction by using the Discrete Wavelet Transform (DWT). Subsequently, PCA+RST simultaneous feature selection and reduced set thresholding algorithm was performed on these selected features to fine tune them for recognition. The comparison was performed using the following four classifiers: J48, Support Vector Machine (SVM), K-nearest neighbors(KNN) and Naive Bayes. The proposed hybrid PCA+RST approach was compared with the traditional approaches like DWT+SVM, and DWT+PCA+KNN in terms of their performance. The performance of the hybrid approach was found to be superior compared to these traditional methods in terms of classification accuracy. In this paper, a hybrid method of PCA and RST is proposed to improve the detection accuracy as well as classification performance in brain tumor diagnosis using MR images. Hopefully, this new tool will result in a visualization technique for more precise medical image analysis and timely diagnostics.Index Terms:-
Hybrid PCA+RST, Feature Selection, MRI Classification, Discrete Wavelet Transform (DWT), Brain TumorREFERENCES
- H. Ali Khan et al., “Brain tumor classification in MRI image using convolutional neural network,” Math. Biosci. Eng., vol. 17, no. 5, pp. 6203–6216, 2020, doi: 10.3934/mbe.2020328.
- M. Rasool et al., “A Hybrid Deep Learning Model for Brain Tumour Classification,” Entropy (Basel)., vol. 24, no. 6, p. 799, Jun. 2022, doi: 10.3390/e24060799.
- A. M. Hadi, G. J. A. K. Al-Abass, and F. F. K. Hussain, “Hybrid-Approach-Based Feature Selection for Magnetic Reverberation Imaging Brain Tumor Classification,” J. Southwest Jiaotong Univ., vol. 55, no. 2, 2020, doi: 10.35741/issn.0258-2724.55.2.13.
- I. S. Seger and A. M. Hadi, “Achieving High Accuracy in Breast Cancer Diagnosis with CNN,” Mars J. Tek. Mesin, Ind. Elektro Dan Ilmu Komput., vol. 2, no. 4, pp. 107–116, 2024.
- M. A. Khan et al., “Multimodal Brain Tumor Classification Using Deep Learning and Robust Feature Selection: A Machine Learning Application for Radiologists,” Diagnostics (Basel, Switzerland), vol. 10, no. 8, p. 565, Aug. 2020, doi: 10.3390/diagnostics10080565.
- A. Raza et al., “A Hybrid Deep Learning-Based Approach for Brain Tumor Classification,” Electronics, vol. 11, no. 7, p. 1146, 2022, doi: 10.3390/electronics11071146.
- A. ARI and D. HANBAY, “Deep learning based brain tumor classification and detection system,” TURKISH J. Electr. Eng. & Comput. Sci., vol. 26, no. 5, pp. 2275–2286, 2018, doi: 10.3906/elk-1801-8.
- H. R. Almadhoun and S. S. A. Naser, “Detection of Brain Tumor Using Deep Learning,” Int. J. Acad. Eng. Res., vol. 6, no. 3, pp. 29–47, 2022.
- Z. Jia and D. Chen, “Brain Tumor Identification and Classification of MRI images using deep learning techniques,” IEEE Access, p. 1, 2024, doi: 10.1109/access.2020.3016319.
- S. Kuraparthi et al., “Brain Tumor Classification of MRI Images Using Deep Convolutional Neural Network,” Trait. du Signal, vol. 38, no. 4, pp. 1171–1179, 2021, doi: 10.18280/ts.380428.
- M. Ibrahim, “Classification of Breast Cancer Using Convolution Neural Network Algorithm,” Iraqi J. Humanit. Soc. Sci. Res., no. 4, pp. 417–433, 2022.
- A. Aziz et al., “An Ensemble of Optimal Deep Learning Features for Brain Tumor Classification,” Comput. Mater. & Contin., vol. 69, no. 2, pp. 2653–2670, 2021, doi: 10.32604/cmc.2021.018606.
- J. S. Paul, A. J. Plassard, B. A. Landman, and D. Fabbri, “Deep learning for brain tumor classification,” SPIE Proceedings. SPIE, 2017, doi: 10.1117/12.2254195.
- A. M. Alqudah, “Brain Tumor Classification Using Deep Learning Technique - A Comparison between Cropped, Uncropped, and Segmented Lesion Images with Different Sizes,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 6, pp. 3684–3691, 2019, doi: 10.30534/ijatcse/2019/155862019.
- M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. Ullah, and S. W. Baik, “Multi-grade brain tumor classification using deep CNN with extensive data augmentation,” J. Comput. Sci., vol. 30, pp. 174–182, 2019, doi: 10.1016/j.jocs.2018.12.003.
- H. Dave, N. Kant, N. Dave, and D. Ghorui, “BRAIN TUMOR CLASSIFICATION USING DEEP LEARNING,” Int. J. Eng. Appl. Sci. Technol., vol. 6, no. 7, pp. 227–238, 2021, doi: 10.33564/ijeast.2021.v06i07.037.
- G. S Tandel et al., “A Review on a Deep Learning Perspective in Brain Cancer Classification,” Cancers (Basel)., vol. 11, no. 1, p. 111, Jan. 2019, doi: 10.3390/cancers11010111.
- N. Noreen, S. Palaniappan, A. Qayyum, I. Ahmad, and M. O. Alassafi, “Brain Tumor Classification Based on Fine-Tuned Models and the Ensemble Method,” Comput. Mater. & Contin., vol. 67, no. 3, pp. 3967–3982, 2021, doi: 10.32604/cmc.2021.014158.
- N. SHARMA, M. K. JAIN, N. AGARWAL, and A. KUMAR, “Brain Tumor Classification Using CNN”, Adv. Appl. Math. Sci., vol. 20, no. 3, pp. 397–407, 2021.
- A. Rehman, S. Naz, M. I. Razzak, F. Akram, and M. Imran, “A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning,” Circuits, Syst. Signal Process., vol. 39, no. 2, pp. 757–775, 2019, doi: 10.1007/s00034-019-01246-3.
- D. Naik, A. Sawarbhande, B. Deogade, P. Dupare, P. Khodke, and V. S. Choubey, “An Implementation of Satellite Image Classification and Analysis using Machine Learning with ISRO LISS IV,” Int. J. Comput. Electron. Asp. Eng., vol. 2, no. 2, pp. 1–9, 2021, doi: 10.26706/ijceae.2.2.20210404.
- B. Badjie and E. Deniz Ülker, “A Deep Transfer Learning Based Architecture for Brain Tumor Classification Using MR Images,” Inf. Technol. Control, vol. 51, no. 2, pp. 332–344, 2022, doi: 10.5755/j01.itc.51.2.30835.
- G. Çınarer, B. G. Emiroğlu, R. S. Arslan, and A. H. Yurttakal, “Brain Tumor Classification Using Deep Neural Network,” Adv. Sci. Technol. Eng. Syst. J., vol. 5, no. 5, pp. 765–769, 2020, doi: 10.25046/aj050593.
- K. Anuradha et al., “Image Caption Generator Using CNN and LSTM,” Int. J. Comput. Electron. Asp. Eng., vol. 2754, no. 1, pp. 26–31, 2023, doi: 10.1063/5.0161370.
- S. Kuraparthi, M. K. Reddy, C. N. Sujatha, H. Valiveti, and C. Duggineni, “Traitement du Signal Brain Tumor Classification of MRI Images Using Deep Convolutional Neural Network,” vol. 38, no. 4, pp. 1171–1179, 2021.
- M. M. Chanu, “A Review on Brain Tumor Segmentation and Classification from Magnetic Resonance Images Using Deep Learning Methods,” J. Adv. Res. Dyn. Control Syst., vol. 12, no. SP3, pp. 87–94, 2020, doi: 10.5373/jardcs/v12sp3/20201241.
- A. A. Abbood, Q. M. Shallal, and M. A. Fadhel, “Automated brain tumor classification using various deep learning models: a comparative study,” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 1, p. 252, 2021, doi: 10.11591/ijeecs.v22.i1.pp252-259.
- F. S. Hadi, “Image Compression Process Using Fractional Fourier Transform and Wavelets Techniques,” Int. J. Comput. Electron. Asp. Eng., vol. 5, no. 1, pp. 25–29, 2024.
- R. Vishnoi, “A review on detection of speedy vehicles,” Asian J. Multidimens. Res., vol. 10, no. 11, pp. 346–350, 2021, doi: 10.5958/2278-4853.2021.01095.8.
- A. M. Sarhan, “Brain Tumor Classification in Magnetic Resonance Images Using Deep Learning and Wavelet Transform,” J. Biomed. Sci. Eng., vol. 13, no. 06, pp. 102–112, 2020, doi: 10.4236/jbise.2020.136010.
- A. A. Hadi, “The Impact of Artificial Neural Network ( ANN ) on the Solar Energy Cells : A Review,” Int. J. Comput. Electron. Asp. Eng., vol. 5, no. 1, pp. 30–41, 2024.
- “Retraction: Brain Tumor Detection and Classification Using Deep Learning Techniques based on MRI Images (J. Phys.: Conf. Ser. 1916 012226),” J. Phys. Conf. Ser., vol. 1916, no. 1, p. 12463, 2021, doi: 10.1088/1742-6596/1916/1/012463.
- A. Bondade, S. Ghate, C. Bhaisewar, P. Chaure, and A. Gaulkar, “Object Detection Using Machine Learning (Missing Object Alert),” Int. J. Comput. Electron. Asp. Eng., vol. 4, no. 3, pp. 63–68, 2023, doi: 10.26706/ijceae.4.3.20230902.
- J. Amin, M. Sharif, A. Haldorai, M. Yasmin, and R. S. Nayak, “Brain tumor detection and classification using machine learning: a comprehensive survey,” Complex & Intell. Syst., vol. 8, no. 4, pp. 3161–3183, 2021, doi: 10.1007/s40747-021-00563-y.
- J. Kang, Z. Ullah, and J. Gwak, “MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers,” Sensors (Basel)., vol. 21, no. 6, p. 2222, Mar. 2021, doi: 10.3390/s21062222.
- M. Aamir et al., “A deep learning approach for brain tumor classification using MRI images,” Comput. Electr. Eng., vol. 101, p. 108105, 2022, doi: 10.1016/j.compeleceng.2022.108105.
- I. Abd El Kader, G. Xu, Z. Shuai, S. Saminu, I. Javaid, and I. Salim Ahmad, “Differential Deep Convolutional Neural Network Model for Brain Tumor Classification,” Brain Sci., vol. 11, no. 3, p. 352, Mar. 2021, doi: 10.3390/brainsci11030352.
- D. R. Nayak, N. Padhy, P. K. Mallick, M. Zymbler, and S. Kumar, “Brain Tumor Classification Using Dense Efficient-Net,” Axioms, vol. 11, no. 1, p. 34, 2022, doi: 10.3390/axioms11010034.
To view full paper, Download here