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Abstract : This paper examines the effects of triaxiality of two primaries on the position and 
stability of the oblate infinitesimal motion about triangular equilibrium points  5,4L   in the 

framework of elliptical restricted three body problem. For determining the characteristic 
exponents of variational equations with periodic coefficients, we have used an analytical method, 
which is based on the Floquet's theory. The stability of infinitesimal around the triangular 
equilibrium points has been studied based on the analytical and numerical exploration which is 
simulated by drawing transition curves bounding the region of stability in the (μ-e) plane. The 
region of stability changed with variations in eccentricity, oblateness and triaxiality. It is observed 
that the equilibrium point is stable in the shaded portion of the transition curve, whereas it remains 
unstable outside the region of the transition curves. 

Keywords: Elliptical Restricted Three Body Problem; Stability; Triaxiality; Oblate infinitesimal 
particle. 
 

1. Introduction:    

The present paper examines the effects of the Triaxiality of two primaries on the 
stability of the oblate infinitesimal body around the triangular equilibrium points of the 
elliptical restricted three-body problem (ER3BP). In the ER3BP models, the motion of 
an infinitesimal mass moves under the influence of two massive bodies revolving 
around their center of mass in an elliptical orbit but does not influence the two 
primaries. The eccentricity of the orbits plays a very important role, in the circular case 
it is missing  Most of the celestial bodies orbit in elliptical rather than circularly Hence 
ER3BP describes the dynamical system more accurately. In this paper, we examine the 
stability of oblate infinitesimal around the triangular equilibrium points under the effects 
of the Triaxiality of primaries by exploiting an analytical method for determining the 
characteristic exponents, based on Floquet's theory. Danby(1964) studied the stability of 
the infinitesimal motion about the triangular points in the ER3BP; by using a digital 
computer numerical scheme based on Floquet theory result is given in the form of 
transition curves in μ−e plane. Bennet(1965) further studied the problem by taking 
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 five equilibrium points in elliptical restricted problem using   characteristics exponents. The method adopted was 
same as employed by Moulton, F.R.(1914) in which he studied classical study of eight satellite of Jupiter. The above 
problem studied by Danby(1964) was further studied by Alfriend, K.T., Rand, R. H. (1969) by using two variable 
expansion method. The perturbation method based on Lie transform was further studied by Deprit, A., Rom, A. (1970) 
to develop power series of small parameter by characteristics exponents of the monodromy matrix They produced the 
principal parts of the characteristics exponents as general functions of mass ratio. The influence of eccentricity of the 
orbits of the primaries with or without radiation pressure on the existence of equilibrium points and their stability was 
studied by Zimvoschikov and Thakai (2004), Markeev (2005), and Ammar (2008). The influence of eccentricity, 
oblateness, and radiation parameters on the location and stability of collinear and triangular equilibrium points has been 
investigated by Narayan and Kumar (2011–2012). Recently, the linear stability of the triangular equilibrium points of 
the ER3BP has been studied by Narayan and Singh (2014a, 2014b) and Narayan and Usha (2014). The families of 
symmetric-periodic orbits in the three-dimensional elliptic problem with a variation of the mass ratio μ and the 
eccentricity e were studied by Sarris (1989). In the last year, Singh and Umar (2013) investigated the effects of the 
luminosity and oblateness of both primary bodies on the collinear libration points of the binary systems Achird, Luyten 
726-8, Kruger 60, Alpha Centauri AB, and Xi Bootis moving in elliptic orbits around their common centre of mass. 
Recently, Singh and Umar (2014) have examined the collinear points of the ER3BP with a triaxial, bigger primary. 

The present study is devoted to the analysis of the stability of oblate infinitesimal around triangular points under the 
triaxial primaries by exploiting the analytical technique developed by Bennet(1965). This method is based on Floquet’s 
theory for the determination of characteristics exponents for a system with periodic coefficients. The transition curves 
have been presented through the simulation technique, which shows the region of stability as well as instability for 
different values of triaxial parameters. 

This paper is organized in five sections, section-1 describes introduction, section -2 provides the equations of 
motion, while section-3 describes the calculation of characteristic exponents and section-4 provides the graphical 
representation of transition curves, which are divided into stable and unstable regions. The discussion and conclusion 
are drawn in section-5. 

2.  Equation of motion 

The differential equations of motion of the infinitesimal mass in the ER3BPunder triaxial primaries in a barycentric, 
pulsating system are given as: Poonam Duggad ,S. Dewangan ,A. Narayan(2020). 

The differential equation of motion of the third body P in non dimensional barycentre, pulsating and non-uniformly 
rotating coordinate system ),( yx is written in the form: 
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Where the mean motion of force due to oblateness  given by Umar and Singh(2014)
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Where primaries masses are 1m and 2m , where '
2

'
121 ,,,  and  are oblateness triaxial parameters ,while e is the 

eccentricity of orbits and  are is the  true anomaly of the primaries respectively. 
The coordinates of the triangular equilibrium points are  
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Now the equation of motion around the equilibrium points 4L are given by 

 00''' 2 xyxx                          (2.6) 

 00''' 2 yyyx                                        (2.7) 

Where   ,    denote the small displacement in  00 , yx  

Then        0xx                       0yy                       (2.8) 
Differentiating, we get: 

'''' ,   yx       and                '''''''' ,   yx            
(2.9) 

Where, 
ve cos1

1


                       (2.10) 

The coordinates of equilibrium points are given by 
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Now, differentiating   partially with respect to x , y  respectively and evaluating xx , xy and yy  at the 

equilibrium points ),( 00 yx [Refer Appendix-1] 
Now transforming equation (2.6) and (2.7) in matrix form, we get  

PXX '                                                                                        (2.12)
  
Where,  
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3. Determination of characteristics exponents  

Exploiting the Floquet’s theory and using the theoretical method developed by Bennett et al.(1965), we shall 
determine the characteristic exponents. For applying the Floquets theory the solution of the system of equation (2.12) is 
written in the form: 

     v
kk

keYX                       (3.1) 

Where kY  is periodic coefficient with  period 2 and k  is the characteristics exponents (2.15).  

     vYeX                                      (3.2) 
Now, Dropping the suffix  for the solution in general form, the derivative of the solution with respect to   is is given 
as: 
  `    YIPY '                      (3.3) 
Where I  is the unit matrix. Now taking the expansion of the coefficient Y, the characteristic exponent   and the 

matrix P in terms of the eccentricity of orbit e as:       ......2210  YeeYYY  
    ......2

2
10   ee                       (3.4) 

And matrix P  is expanded as:             ......, 2210  PeePPevP                                    (3.5) 
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Substituting the value of Y , 'Y , and P  from equation (3.4) and equation (3.5) in equation (3.3), we get: 
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Equating the coefficient of terms with the same power in e  from both sides and using equation (3.4), we obtain the 
following equations 
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Proceeding further , we get 
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The solution of the zeroth order equation will be a constant vector and the thn  order equation with non-

homogeneous terms have frequencies upto
2
n

. Then the particular solution is given as 
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Substituting the values from equation (3.11) and (3.12) in equation (3.10), we obtain from the first equation of system 
equation (3.10) 
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For the existence of  0,0a , it is necessary that  
  0det 0

0  PI                                               (3.18) 

That is,  0

02
2
100

010

00
0

00
0

0





























yyyx

xyxx 




 

From the above relation, we get: 
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Solving equation (3.19), we obtain the value of 0  as follows: 
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Substituting the values of 000 , xyyyxx and  in the equation (3.20) and equation (3.21), for the value of  Q and R
,refer Appendix-II 

From the first equation of the system of equations (3.13), it can be observed that it is necessary that the determinant 
of the coefficients on the left with any column replaced by the non-homogenous terms on the right be zero.  

      0,0
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That is       0,0
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0det aaPI    vanishes.  Since 1 appears as a factor in each term, therefore we get  
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Again from Equations (3.15) and (3.16),  the solutions for  1,1a  and  1,1 a  are : 
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Substituting the value of  1,1a  and )1,1( a  equation (3.17) can also be written as: 
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The matrices with in the square bracket are complex conjugates, so that only real parts of either needs to be considered 
and then equation (3.27) can be written as: 
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Now, after some mathematical manipulations the value of 2  can be obtained from equations (3.28) given by: 
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Now substituting all the above value in equation (3.30), the value of A is obtained as: 

  
D
TA                    (3.32) 

where,     221100
2
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and                   RRQQD 32444 2
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2                                 (3.34) 
Thus, the characteristics exponents up to second order of approximation in e  can be written as: 
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4. Transition curves separating stable and unstable regions. 

The transition curves describe the stability of the triangular equilibrium points in the ERTBP by separating stable 
and unstable regions. The transition curves separating the stable and unstable regions can be found by simply equating 

the expression for the characteristics roots or exponents to the value for periodic solution in the range 
2
10    . 

From Floquet’s theory, if k  are characteristics exponents then in polar form it can be written as: 

     2,1,0,21
 nnibL

T kkNk                  (4.1) 

That is, the characteristics exponents are only determined within the imaginary multiple of
T
n2

, but it is the real part 

of the exponent that determines if the solution is bounded or not. Hence, the corresponding periodic solution form of 
equation (4.1) is obtained as: 
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In the range 
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10    , the periodic solution is given by: 

2
* i

                             

  Replacing  by * in equation (3.35), we have:   0
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equation further we get: 
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Now, evaluating the values of A  from equation (3.32) and that of 2
0  from equation (3.22), the values of e  can be 

calculated for different value of  . 
 Using equation (4.3) we get the relation between  and e , which gives the transition curves in the e plane. 

5. Discussion and Conclusion  

Based on the Floquet’s theory, the stability of oblate infinitesimal’s motions about the triangular equilibrium points 
in the ER3BP with triaxial primaries has been investigated using analytical technique. The transition curves in the  - e 
plane has been plotted in Fig 1-3 ,it was found that when all the other perturbing forces were present  then  the value of 
 lies between .05 to .06 was found same. From Fig 4-9 ,it was found that when all the other perturbing forces are 
neglected  then also  the value of  lies between .05 to .06.  

                                
Figure 1. The transition Curves in  -e  plane for                              Figure 2. The transition Curves in  - e  plane for 
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                     Figure 3. The transition Curves in  - e plane for    Figure 4. The transition Curves in  - e  plane for 
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Figure 9. The transition Curves in - e plane for 

1 =0; 2 =0; 1 =0.0004; 2 =0.0002;
'

1 =0.0007; '
2 =0.0002; 4A =0 
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